1,978 research outputs found

    The Centaurus Group and the Outer Halo of NGC 5128: Are they Dynamically Connected?

    Get PDF
    NGC 5128, a giant elliptical galaxy only 4\sim 4 Mpc away, is the dominant member of a galaxy group of over 80 probable members. The Centaurus group provides an excellent sample for a kinematic comparison between the halo of NGC 5128 and its surrounding satellite galaxies. A new study, presented here, shows no kinematic difference in rotation amplitude, rotation axis, and velocity dispersion between the halo of NGC 5128, determined from over 340\sim340 of its globular clusters, and those of the Centaurus group as a whole. These results suggest NGC 5128 could be behaving in part as the inner component to the galaxy group, and could have begun as a large initial seed galaxy, gradually built up by minor mergers and satellite accretions, consistent with simple cold dark matter models. The mass and mass-to-light ratios in the B-band, corrected for projection effects, are determined to be (1.3±0.5)×1012(1.3\pm0.5) \times 10^{12} M_{\sun} and 52±2252\pm22 M_{\sun}/L_{\sun} for NGC 5128 out to a galactocentric radius of 45 kpc, and (9.2±3.0)×1012(9.2\pm3.0) \times 10^{12} M_{\sun} and 153±50153\pm50 M_{\sun}/L_{\sun} for the Centaurus group, consistent with previous studies.Comment: 14 pages, 3 tables, 7 figures, Accepted for publication in A

    A Circuit Model for Domain Walls in Ferromagnetic Nanowires: Application to Conductance and Spin Transfer Torques

    Full text link
    We present a circuit model to describe the electron transport through a domain wall in a ferromagnetic nanowire. The domain wall is treated as a coherent 4-terminal device with incoming and outgoing channels of spin up and down and the spin-dependent scattering in the vicinity of the wall is modelled using classical resistances. We derive the conductance of the circuit in terms of general conductance parameters for a domain wall. We then calculate these conductance parameters for the case of ballistic transport through the domain wall, and obtain a simple formula for the domain wall magnetoresistance which gives a result consistent with recent experiments. The spin transfer torque exerted on a domain wall by a spin-polarized current is calculated using the circuit model and an estimate of the speed of the resulting wall motion is made.Comment: 10 pages, 5 figures; submitted to Physical Review

    Total Generalized Variation for Manifold-valued Data

    Full text link
    In this paper we introduce the notion of second-order total generalized variation (TGV) regularization for manifold-valued data in a discrete setting. We provide an axiomatic approach to formalize reasonable generalizations of TGV to the manifold setting and present two possible concrete instances that fulfill the proposed axioms. We provide well-posedness results and present algorithms for a numerical realization of these generalizations to the manifold setup. Further, we provide experimental results for synthetic and real data to further underpin the proposed generalization numerically and show its potential for applications with manifold-valued data

    Transmission phase of a quantum dot and statistical fluctuations of partial-width amplitudes

    Full text link
    Experimentally, the phase of the amplitude for electron transmission through a quantum dot (transmission phase) shows the same pattern between consecutive resonances. Such universal behavior, found for long sequences of resonances, is caused by correlations of the signs of the partial-width amplitudes of the resonances. We investigate the stability of these correlations in terms of a statistical model. For a classically chaotic dot, the resonance eigenfunctions are assumed to be Gaussian distributed. Under this hypothesis, statistical fluctuations are found to reduce the tendency towards universal phase evolution. Long sequences of resonances with universal behavior only persist in the semiclassical limit of very large electron numbers in the dot and for specific energy intervals. Numerical calculations qualitatively agree with the statistical model but quantitatively are closer to universality.Comment: 8 pages, 4 figure

    Interacting electron systems between Fermi leads: effective one-body transmissions and correlation clouds

    Get PDF
    In order to extend the Landauer formulation of quantum transport to correlated fermions, we consider a spinless system in which charge carriers interact, connected to two reservoirs by non-interacting one-dimensional leads. We show that the mapping of the embedded many-body scatterer onto an effective one-body scatterer with interaction-dependent parameters requires to include parts of the attached leads where the interacting region induces power law correlations. Physically, this gives a dependence of the conductance of a mesoscopic scatterer upon the nature of the used leads which is due to electron interactions inside the scatterer. To show this, we consider two identical correlated systems connected by a non-interacting lead of length L_CL\_\mathrm{C}. We demonstrate that the effective one-body transmission of the ensemble deviates by an amount A/L_CA/L\_\mathrm{C} from the behavior obtained assuming an effective one-body description for each element and the combination law of scatterers in series. AA is maximum for the interaction strength UU around which the Luttinger liquid becomes a Mott insulator in the used model, and vanishes when U0U \to 0 and UU \to \infty. Analogies with the Kondo problem are pointed out.Comment: 5 pages, 6 figure

    Partial local density of states from scanning gate microscopy

    Full text link
    Scanning gate microscopy images from measurements made in the vicinity of quantum point contacts were originally interpreted in terms of current flow. Some recent work has analytically connected the local density of states to conductance changes in cases of perfect transmission, and at least qualitatively for a broader range of circumstances. In the present paper, we show analytically that in any time-reversal invariant system there are important deviations that are highly sensitive to imperfect transmission. Nevertheless, the unperturbed partial local density of states can be extracted from a weakly invasive scanning gate microscopy experiment, provided the quantum point contact is tuned anywhere on a conductance plateau. A perturbative treatment in the reflection coefficient shows just how sensitive this correspondence is to the departure from the quantized conductance value and reveals the necessity of local averaging over the tip position. It is also shown that the quality of the extracted partial local density of states decreases with increasing tip radius.Comment: 16 pages, 9 figure

    Spin-orbit effects in nanowire-based wurtzite semiconductor quantum dots

    Get PDF
    We study the effect of the Dresselhaus spin-orbit interaction on the electronic states and spin relaxation rates of cylindrical quantum dots defined on quantum wires having wurtzite lattice structure. The linear and cubic contributions of the bulk Dresselhaus spin-orbit coupling are taken into account, along with the influence of a weak external magnetic field. The previously found analytic solution for the electronic states of cylindrical quantum dots with zincblende lattice structures with Rashba interaction is extended to the case of quantum dots with wurtzite lattices. For the electronic states in InAs dots, we determine the spin texture and the effective g-factor, which shows a scaling collapse when plotted as a function of an effective renormalized dot-size dependent spin-orbit coupling strength. The acoustic-phonon-induced spin relaxation rate is calculated and the transverse piezoelectric potential is shown to be the dominant one.Comment: 12 pages, 5 figure

    Mesoscopic behavior of the transmission phase through confined correlated electronic systems

    Get PDF
    We investigate the effect of electronic correlations on the transmission phase of quantum coherent scatterers, considering quantum dots in the Coulomb blockade regime connected to two single-channel leads. We focus on transmission zeros and the associated \pi-phase lapses that have been observed in interferometric experiments. We numerically explore two types of models for quantum dots: (i) lattice models with up to eight sites, and (ii) resonant level models with up to six levels. We identify different regimes of parameters where the presence of electronic correlations is responsible for the increase or the decrease of the number of transmission zeros vs. electrochemical potential on the dot. However, we show that interaction effects cannot reproduce the universal behavior of alternating resonances and phase lapses, experimentally observed in many-electron Coulomb blockaded dots. Our numerical results strongly suggest that the main experimentally observed features are captured by the theory for chaotic ballistic dots of Molina et al., [Phys. Rev. Lett. 108, 076803 (2012)] incorporating one-particle wave-function correlations but ignoring many-particle electronic correlations.Comment: 17 pages, 14 figure

    Spin relaxation near the metal-insulator transition: dominance of the Dresselhaus spin-orbit coupling

    Full text link
    We identify the Dresselhaus spin-orbit coupling as the source of the dominant spin-relaxation mechanism in the impurity band of doped semiconductors. The Dresselhaus-type (i.e. allowed by bulk-inversion asymmetry) hopping terms are derived and incorporated into a tight-binding model of impurity sites, and they are shown to unexpectedly dominate the spin relaxation, leading to spin-relaxation times in good agreement with experimental values. This conclusion is drawn from two complementary approaches employed to extract the spin-relaxation time from the effective Hamiltonian: an analytical diffusive-evolution calculation and a numerical finite-size scaling.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let

    From the Fermi glass towards the Mott insulator in one dimension: Delocalization and strongly enhanced persistent currents

    Full text link
    When a system of spinless fermions in a disordered mesoscopic ring becomes instable between the inhomogeneous configuration driven by the random potential (Anderson insulator) and the homogeneous one driven by repulsive interactions (Mott insulator), the persistent current can be enhanced by orders of magnitude. This is illustrated by a study of the change of the ground state energy under twisted boundary conditions using the density matrix renormalization group algorithm.Comment: 4 pages, 5 figures; RevTe
    corecore